
(June 28, 1968 i o  June 30, '1969) 

ontr 598 

Prepared by 

- - = 

Frequency  a n d  Time D i v i s i o n - E a s t ,  Salem R o a d ,  B e v e r l y ,  M a s s a c h u s e t t s  

For 

d 



July 1969 

Final Report 

for 

Research and Development 
To Optimize the Hydrogen Maser 
(June 28, 1968 to June 30, 1969) 

Contract NAS5-11598 

Goddard Space Flight Center 

Contracting Officer: J. A. Maloney 
Technical Monitor: Dr .  F. G.,Major 

Prepared by: 

Frequency and Time Div. - East 
HEWLETT-PACKARD COMPANY 

Beverly, Mass. 

Project Manager: Dr. Richard F. Lacey 

for 

Goddard Space Flight Center 
NATIONAL AERONAUTICS & SPACE ADMINISTRATION 

Greenbelt, Maryland 

i. 





T A B L E  O F  C O N T E N T S  

I ,  INTRODUCTION 
Page 

1 

11. THE FIELD OF A HEXAPOLE MAGNET 
Field Measurement in a Hexapole Magnet 
Saturation in the Pole Tips 

III. TRAJECTORY CALCULATION FOR HEXAPOLE MAGNETS 5 
Straight Bore Magnets 5 

Tapered Hexapole Magnets 6 

IV. MAPPING 8 

V. CALCULATION. OF PERFORMANCE OF BEAM OPTICAL SYSTEMS 11 

Tapered First Magnet 16 

VI. ADIABATIC FAST PASSAGE AND RABI RESONANCE 
Relative Merits of Adiabatic Fast Passage 
and Rabi Resonance Transit ion Methods 

17 

21 

VII. IMPROVEMENT OF MASER OPERATION 23 

VIII. DESCRIPTION OF APPARATUS 

M. EXPERIMENTAL RESULTS 

26 

30 

X. CONCLUSION 33 

XI. NEW TECHNOLOGY 34 

References 35 

Appendix1 -- MAPSIN 
Appendix I1 -- STRAFO 
Appendix 111-- ADIAFP 

LIST O F  T A B L E S  

I .  -- 
II. -- Fractional Efficiency 

Beam Optics System Dimensions 14 
14 

III. -- Comparison of Actual vs. Design Ideal, Double Magnet Systems 
IV. -- Comparison of Computations of Actud  Double Magnet System 

27 

27 

iii. 



RESEARCH AND DEVELQ 
TO OPTIMIZE THE HYD ER: 

F I N A L  R E P O R T  

From the theory of operation of the atomic hydroge 
apparent that its performance can be markedly improved by incr 
fraction of hydrogen atoms entering its storage bulb that are in the (F = 1 m =  0) 

state (Reference 1). In the conventional maser desi 
entering the storage bulb consists principally of a mixture of the desired 
(F= 1, m=O) state and the (F= 1, m= 1) state. The latter do not contribute to 
the maser's oscillation, but degrade it by l i n e ~ ~ o ~ e ~ ~ ~  s p i n ~ x c h ~ ~ e  
collisions with the radiating atoms that provide the maser's out 

Several workers have suggested (e. g. 

possible to eliminate the unwanted state by usi 
be& optics design rather than the conventional one. The c o n v e ~ t i o n ~  system 
consists of a single hexapole magnet through which the atomic beam of hydro- 
gen passes. Atoms in the (F = 1 m= 1) and (F = 1, m= 0) states are deflected 
toward the axis of the magnet, while the other 
The length and position of the magnet are so designed that a fraction of the atoms 
deflected toward the axis are focussed into the storage bulb. The proposed 
design uses two hexapole magnets with a space between the 
ponent of atomic angular momentum parallel to 
rotated 180': atoms in the (F = 1, m= 1) state e 
and vice versa. Atoms in the other two states 

rence 2) that it should be 

mewhat more complicated 

o states are de eeted outward 

as before. The first magnet deflects the (F = 1 , m  = -1) and (F = 0 

out of the beam, and the second deflects those atoms which have 
transition into the (F = 1 m= -1) state out of the be 
atoms remaining will be in the desired (F = 1 m= 

The object of our work is to reduce to an effective, 
give our practical one. Below we discuss our steps in re 

conclusions on the best way to proceed in applying our r e s ~ t s ~  
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II. THE FIELD OF A HEXAPOLE MAGNET 

In order to make accurate calculations of atomic beam optics, one 
must know the strength of the field in the state selection magnets. Measure- 
ments with Hall effect magnetometers are difficult to make accurately, particu- 
larly in magnets with small gap and large gradients. We have developed a 
technique that permits accurate evaluation of the field in a hexapole magnet. 

The two components of the field in a magnet can be expressed as: 

where ro is the radius of the magnet. If the hexapole magnet is symmetric and 
the pole tips symmetric about their midplane, the only non-zero values of Bn 
exist for n=3, 9, 15 ---- , when the dominant term is for n=3, and the higher 
terms are the result of deviations of the pole tips from infinite permeability 
and the ideal hexapolar pole tip shape: 

(r/rOl3 cos 38 = 1. 

Field Measurement in a Hexapole Magnet 

The magnitude of the Bn can be determined by rotating the magnet 
about its axis and measuring the voltage induced in a rectangular pickup loop 
placed so that it is bisected by the magnet axis. If the voltage is measured with 
a wave analyzer, the components at the various harmonics of the rotation fre- 
quency can readily be separated. If the wire  is round, with diameter d,  and the 
rotation frequency w is low enough so that the skin depth of the wire  is large 
compared to d, the voltage induced by each Bn is given by the expression: 

where L is the length of the loop, D is its diameter measured between the centers 
of the wire, and (i) is the binomial coefficient. 

Experimentally we find that harmonics of w other than those for which 
n=3, 9 or 15 are present, 
perturbations of the field. The components for n=9 and 15 can be minimized if 
the tips of the pole pieces are shaped to match the theoretically ideal shape 
reasonably closely. 

their amplitude is down so that they represent minor 
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It can be important that components Bn for n#3 be kept negligible. 
Calculations of their effect on the force exerted on an atom at a distance close 
to ro from the axis show the change in the force to be surprisingly large. We 
have built hexapole magnets in which the pole tip profile is a circle whose 
radius is 56% of the radius of the hexapole magnet gap (Figure 1). For such 
magnets we have found typically that B, = 6800 gauss, B9-0, and B,, < 100 

gauss. By contrast, for a magnet whose pole tips were square, B, = 6200gauss, 
B9 = 842 gauss, and B,, was negligible. One can show in this case that the mag- 
netic gradient at ro varies by more than 3:l  with changes in 0 .  

The measured field strength, B,, we have obtained is lower than we 
had originally hoped for. Measurement of the flux density across various 
planes in a pole piece shows that the limitation is not saturation of the iron of. 
the pole piece, although flux densities are as high as 18,700 gauss. We believe 
that the limitation in our present design is the value of the coercive force of 
the Alnico 8B permanent magnets that produce the magnetic field, and that a 
magnet alloy with a greater coercive force would give a larger field at the pole 
tips, even though its energy product were no larger. 

Saturation in the Pole Tips 

The ideal hexapole pole tip has the contour (r/rO)’ cos 30 = 1, where 
ro is the radius of the magnet gap. For an ideal hexapolar field, 

where Bo is the field strength at a pole tip. We can estimate where saturation 
will occur by integrating Beds over the surface of a pole tip, and equating it to 
the integral of B o d s  across the tip, inside the iron. Considering a unit length 
of pole piece, from the two equations above we can obtain 

d S  = r Ldr2 + (rd8)”jh =ro sec?Lb30de 

B = Bosecg30 

,)’Bods = ,f?30rosec2 39de = 3Borotan I 38’ 
0 
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The flux through a surface in the pole tip will. be approximated by Bre' ; this 
is the value for half a tip, from its midplane to a surface. 

:. B = ( B ~ /  30') sec'13 39' sin 391 

Because of the secant factor, we can see that the pole pieces must saturate 
as 9 * n/6 for whatever field we have at the tips. If Bo is 7500 gauss, satura- 
tion occurs in iron at about three times that value. Expressing 8' as d 6  - 6,  
and setting B/Bo = 3, from the previous equation we find 

and that the value of r at which saturation occurs is 

Generally, hexapole magnet pole pieces are not made as thick as the "ideal" 
shape, specifically to reduce leakage flux between them and thereby reduce 
the effect of saturation. 

To summarize, the field in a hexapole magnet is probably more com- 
plicated than is usually assumed, and sophisticated techniques should be used 
to determine it. It is particularly important to be able to do this in the case 
of a two-magnet beam optics system because the efficiency of the system will 
depend on matching the design of the two magnets. To design the magnet 
lengths, it is necessary to know their field 'strength. 
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III. TRAJECTORY CALCULATION FOR HEXAPOLE MAGNETS 

The force on an atom in a magnetic field is 

where p is the effective magnetic dipole moment of the atom. For an atom 
with a one-electron hyperfine structure, 

1! W is the hfs splitting in the ground state, gI is the nuclear g-factor divided 
by the ratio of the proton mass to the electron mass, considered positive for 
positive nuclear moments; I is the nuclear spin, p, is the Bohr magneton, 
and m is the projection quantum number for the total atomic angular momentum. 
The upper sign applies to the magnetic sublevels for which the total angular 
momentum, F = I t J, and the lower to those for which F = I I - J I .  For 
hydrogen, x = 1.976 x By where the magnetic field B is in gauss. When 
x > > 1, the dipole moment for m = 0 states approaches a Bohr magneton, 
the value, for hydrogen, for states with m = + 1. Since x = 1 for B a little 
over 500 gauss, it is a useful approximation to set = 
independent of field strength. With this approximation, in a hexapole magnet, 
the equations of motion of an atom are  particularly simple. 

for all states 

Straight Bore Magnets 

If x and y a re  the transverse coordinates of displacement, and z the 
coordinate parallel to the beam and magnet axis, 
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where m is the mass of the atom, ro the radius o 
the magnetic at  the pole tips, assuming an 
upper sign applies to the states deflected towar 
and the lower to those deflected toward stronger magnetic fields. x and y 
may conveniently be expressed as functions of z instead of time if we recog- 
nize that the x and y components of velocity are  always small compared to 
the z component: V, V. Then 

X 
d2x 21.1 Bo 
dz2 mv%02 
- = qz- 

and similarly for y. The solutions of these equations are  apparent; when the 
minus sign applies, 

x = xo cos ( B z/ro ) t ( x i  ro/p ) sin ( B z/ro ) 

where B = (2p Bo /mv2)'l2, xo is the value of x at z = 0, and ~ 0 '  is the 
value of dx/dz at z = 0. When the force is divergent, 

If the deflection force were not linear-i. e. , directly proportional to distance from 
the magnet axis--the equations for x and y would no longer be independent, 
and general solutions in analytic form could not be obtained. 

Tapered Hexapole Magnets 

It has been suggested that hexapole state selection magnets with tapered 
bores might be advantageous in hydrogen maser beam optics systems. The 
trajectory of an atom with constant dipole moment can be solved analytically 
for this case, als We neglect the z component of the force of the magnet, 
assuming the e force is perpendicular to the axis, and assume again that 
vz Gv. 

Let the radius a t  a position z in the tapered magnet be 

r = ro ( 1  tkz/ro) . 
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where k is the amount of taper. The differential equation is then 

The equation is simplified by making the substitution 

u = In (ro t k z )  

We then obtain the equation 

- - -  d% 

With the parameter = (2y Bo /mv2k2 F 1/4)1’2 , the solutions a re  

x = % ‘ ( l  tkz/ro:’2 [cos[ljln(l tkz/ro)] - ( l / Z q )  sin [Vln ( l+kz / ro ) \  J l  
t%’ (1  tkz/ro)1’2 (r,,/kV) sin [Tln (1  t k z h , ) ]  

when the upper sign applies (converging deflection) and a similar expression 
with the trigonometric functions replaced by the corresponding hyperbolic ones 
when the lower sign is appropriate (diverging deflection). Similar expressions 
hold for y . 

These general analytic formulae a re  valuable when we are  interested in 
considering the finite size of the source of hydrogen atoms. If the atoms do not 
start  precisely on the axis of the beam optics system, we can still, by using 
these solutions, accurately evaluate the beam optics. There a re  cases when 
the finite diameter of the source cannot safely be neglected. We discuss how 
these solutions a re  used in the following section. 
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IV. MAPPING 

We notice that the solutions for the atomic trajectories in the previous 
section a re  expressed in the form: 

where f (2) and g( z )  are  solutions of the differential equation, The slope 
x' = dx/dz can also be expressed in a similar form: 

x'(2) = xof '  (2) t x ;  g' ( 2 )  

The functions f and g will be different in different magnets, but the form 
will be the same, even in a drift region outside the magnets, In a magnet, 
f and g a re  functions of velocity. It has been shown (Reference 3) that the 
solutions of the differential equations for the atomic trajectories can be used 
as  mapping transformations that facilitate the' evaluation of an atomic beam 
opti'Gs system. If 

>.. 

x1 (2,) = % f ,  (2,) +xo' g,(z , )  

and 

we can express x, ( ZJ and x,' ( zz) as linear functions of xo and ~ 0 '  : 

x&2) = XoF, 4- xo' G ,  

x i  (z,) =%F2' t%' Gi 

where 
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Similar relations hold for further steps, and may be obtained by iteration. 
They have the form 

We see that after n steps 

Now consider a circle in the x - y plane at zn, centered on the axis, and 
of radius R. 

x$ t y$ = R2 

Substituting the values of xn and Yn in terms of xo and ~ 0 '  we get 

We can, with complete generality, choose our coordinate system so that 
yo = o .  Transforming this equation we have 

In the "slope" space with coordinates ~ 0 '  and yo', our circle has been trans- 
formed into another circle of radius R/Gn centered at  -%Fn /Gn . If the original 
circle of radius R represents a target aperture, such as  the entrance hole of 
the storage bulb of a hydrogen maser, then the transformed equation represents 
the boundary of the solid angle at  the point x,, of the source in which atoms will 
be deflected into the target. We assume that the slopes a re  small enough so that 
the slope (tan 0 )  may be taken equal to the angle ( P). We must also, of course, 
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allow for collisions with other stops and apertures along 
transform each ciroular aperture or stop back 
of coordinates x: and yd. Each will be a circle, and if xo# 0, their 
centers will not in general coincide. The useful solid angle is then the 
portion of the intersection of the transforms of the limiting apertures not 
obscured by the transforms of any stops in the optical system. 

By calculating 1/Gn and Fn/Gn for each n and velocity of interest, 
we can get, relatively inexpensively, a qualitative idea of the behavior of 
an atom& beam optical system, including the velocity range accepted, 
sensitivity to the finite size of the source, and requirements on stop sizes. 

The mapping transformation scale factors can also be used to draw 
the actual maps of the overlapping circles to help the designer visualize 
what is going on. It must be recognized, of course, that the limited number 
of apertures calculated cannot completely represent the optical system; 
atoms will be stopped at points between them. But for some designs the 
approximation is very good. In the next section we discuss how we use 
the mapping transformations and other approximations to estimate the 
performance of beam optics systems. 
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V. CALCULATION OF PERFORMANCE OF BEAM OPTICAL SYSTEMS 

We have estimated the performance of hypothetical designs of beam 
optical systems in two different ways. The first involves the use of the map- 
ping transformations described above, and the second involves calculating 
the trajectories of atoms point by point through the system. 

In the first method, using a program named MAPSIN (Appendix I), 

we find the area of the intersections of the circles representing the target 
aperture and the entrance and exit apertures of the two state-eelecting magnets. 
This is done for a series of values of xo for each velocity in a series of veloci- 
ties. This area represents the solid angle inside which atoms from the point xo 
of the source can reach the target aperture. Weighting each area appropriately 
for its origin and velocity, we sum them to find the total signal. 

This area generally is irregular in shape, and we have chosen to 
find it by the unbiased, but computationally inefficient method of hit-or-miss 
Monte-Carlo, in which the components of the initial slope, dx/dz and dy/dz, 
are chosen randomly and tested to see if they lie within the solid angle of 
acceptance. The size of the solid angle is proportional to the fraction of the 
random initial slopes that lie within it. 

It turns out that, for reasonable designs, the limiting aperture is the 
exit of the first magnet for the dominant part of the intensity. That is, if we 
plot intensity as a function of velocity, for the dominant part of the curve the 
useful solid angle is that defined by trajectories that graze the exit aperture 
of the first magnet. Here we are deceived somewhat by our calculations, 
because for the slower range of velocities the actual limiting aperture should 
be some distance within the magnet. Therefore the calculated intensities are 
larger than they should be. The effect can be reduced somewhat by limiting 
the maximum initial slope allowed to that obtained from energy considerations 
for an atom originating on axis within the magnets: 
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Since we specifically wish to  consider atoms originating outside the magnet 
and off-axis, the above restriction improves, but does not perfect the cal- 
culation. 

The second method we use to estimate the performance of a given 
design is the straightforward one of calculating the trajectory of the atom 
from point to point along its path. This problem is simplified greatly if we 
can assume that the atom originates on the axis of symmetry of the hexapole 
magnets. In that case we need consider only one dependent coordinate, i.e., 
the displacement of the atom from the axis. If at any point z along the atom's 
path we specify its displacement r and slope dr/dz, we calculate its trajec- 
tory between z and z + & by assuming it is acted upon by a constant force, 
which we calculate for r at z, over the interval Az. We then repeat the 
procedure until the atom reaches its target or runs into an obstacle. We 
repeat this for a series of initial slopes and a series of velocities, integrating, 
with appropriate weighting, over the successful initial slopes, and again over 
the range of velocities. The program for doing this, called STRAFO, is listed 
in Appendix II. 

For the case of principal interest to us the results of the two methods 
have been reasonably consistent with each other. They can lead to markedly 
different results in two circumstances. The first is when the magnet next to 
the source is so long that atoms oscillate inside it; that is, are deflected 
back toward the center and cross over to the other side, to be deflected inward 
again. It is clear that having a limiting aperture at the exit only does not limit 
the possible trajectories sufficiently to approximate the actual situation where 
they might collide with the edge of the magnet over a considerable length. The 
mapping method breaks down here, although the limitation on solid angle 
improves the situation, of course, 
methods differ is when the distance from the magnet to the target aperture 
is loni, and the source radius not sufficiently small. We have made calcula- 
tions for systems in which the second method we have described (STRAFO) 
gave quite favorable results, but using the first, which takes off-axis source 
points into consideration, the efficiency appeared to be very poor. 

i 
The second circumstance where the two 
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In F i e .  2A and 2B: are shown the velocity distributions calculated 
with the two programs for the beam optics systems whose dimensions are 
given in Table I. The program STRAFO is shown twice, once with the magnet's 
force on the atom assumed to be proportional to displacement from the axis, 
and again when the force is derived from the Breit-Rabi expression for states 
with m= 0. The limitation in the program MAPSIN is the limitation on initial 
slope mentioned above that rejects some trajectories which would otherwise 
hit the pole pieces of the first magnet. The integrated areas of the curves in 
Figs. 2A and ZB are given in Table II. 

The area under these curves represents the fraction of atoms in the 
(F = 1, m= 0) state effused from the source collimator of the hydrogen maser 
that reach the target aperture. We assume that the collimator consists of 
round tubes whose length is ten times their diameter, and we neglect the 
dependence of intensity with angle for the entire angle of acceptance. For the 
design velocity, the maximum initial angle transmitted is emax = 2pB0/3kT , 
equal to approximately .03 rad for 7500 gauss magnets. The characteristic 
width of the angular distribution, the ratio of collimator diameter to length, 
is 0.1. While emax is not very small compared to . 1, neglecting the varia- 
tion of intensity is a reasonable approximation that greatly simplifies compu- 
tation (Reference 5). We also assurne that the effused hydrogen atoms have a 
Maxwell-Boltzmann distribution with a characteristic temperature of 380%. 

J--- 

The dimensions of the system labeled If space maserf1 are those of an 
actual experimental maser. Those labeled "double magnet" refer to a proposed 
design that we believe to be most practical for our state filter beam optics 
system. Notice that their efficiencies are comparable. The double magnet 
system, as computed, is more efficient than designs that have successfully 
been used. For example, with a system whose dimensions are identical with 
the space maser, except that the distance from the magnet to the target aper- 
ture is 30 inches, the fractional intensity, assuming the Breit-Rabi exact force 
law, is 1.5 x low3. This is markedly less than the 2.87 X calculated for 
the double magnet system (Table II). In all these calculations we have not included 
any stops. Taking them into account would reduce the intensity a little, and clip 
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Table I -- Beam Optics System Dimensions 

(Linear Dimensions in Inches) 

Space Maser 

Collimator to First Magnet .125 

First Magnet Length 3.0 
First Magnet Diameter .125 
First40 -Second Magnet -- 
Second Magnet Length -- 
Second Magnet Diameter -- 
Second Magnet to Target 9.0 

Target Diameter .226 
Maximum Magnet Field Strength 7500G 
Source Collimator Diameter .020 

Table II -- Fractional Efficiency 

Space Maser 

MAPSIN with limitation 4.92 x 
STRAFO with linear force law 
STRAF’O with Breit-Rabi force law 

4.56 x lF3 
4.33 X l(r3 

Double Magnet 

-125 
2.112 
.080 

4.0 
7.0408 
,125 

10.0 
.226 

7500G 
.OlO 

Double Magnet 

3.66 10-3 
3.15 
2.87 X lIT3 
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the high velocity tail of the curves. The differences between the three 
computed values are small, we feel, as beam optics computations go, and 
we will not be misled in using them. 

In choosing our design for the two magnet system, we had to con- 
sider not only efficiency for the case illustrated where both magnets deflect 
the atoms toward their axis, but also those cases where one magnet deflects 
inward and the other outward. For the state filter system to work, the trans- 
mission in such cases must be negligible compared to the desired case. The 
system we found that does this best is shown schematically in Figure 3, and 

its dimensions are given in Table I (double magnet). 

The dimensions were arrived at in the following way. The distance 
between magnets, and the distance from the second magnet to the aperture 
were chosen to be short, yet still long enough so that magnetic shielding 
problems would not be inordinately difficult either in the transition region 
between the magnets nor in the storage bulb.. The diameter of the second 
magnet gap was chosen to be .125 inch because that is the diameter that has 
been most used. The diameter of the first magnet gap was chosen to be .080 inch, 
to be smaller than the second, but still practicable to build. We assumed a 
peak magnetic field strength of 7'500 gauss, and chose the length of the first 
magnet so that an atom with the most probable velocity of the velocity distri- 
bution ( 1 . 2 2 ~ )  will leave the magnet parallel to the axis if it originates at the 
axis at the entrance to the magnet. That is, 

where o= ( 21JBO/3kT)% This condition holds when the argument of the cosine is 
77/2, o r  1 = nr0/2,u. The criterion for the length of the second magnet is that tra- 
jectories of atoms with the modal velocity parallel to the axis pass through the 
center of the target aperture. That is, at the exit of the second magnet 

XI = xol cos ( W  A h o )  = 0 

X 

where L is the distance from the magnet to the aperture. 
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x = xo cos wi/ro 

The first solution of this transcendental equation results in a very short magnet, 
which will not reject unwanted states very well, so we use the second, which 
gives us the trajectory shown in the middle diagram of Figure 3. This mode 
of trajectory is successful for a range of velocities about the design velocity. 
A substantial contribution to the useful flux at the target aperture is made 
by slower atoms whose typical trajectory is shown in the bottom diagram. 
The two velocity’ranges are marked by the cleft in  one of the intensity curves 
in Fig. 2B. 
ing the magnet lengths 10% about those given in Table I, we showed that these 
dimensions, designed to focus the most probable velocity, were optimum. 
The fractional intensity reaching the target aperture was 2.87 x lV3 for the 
optimum design (calculated using the program STRAFO); and 2.68 x loo3 if 
the magnets were 10% shorter, and 2.79 X lom3 if they were 10% longer. 

With the other two, the two velocity intervals overlap, By vary- 

Tapered First Magnet 

In Figure 4 we show the intensity distribution curves for the case 
where the first magnet is tapered slightly. The initial diameter is .080 inch, 
and the taper is .0034. The length of the magnet is increased to 2.4 inches 
to match the criterion by which we determined the length of the straight bore 
magnet. The total intensity in each case is about 10% greater than for the 
corresponding calculakion with a straight bore magnet. We deem the improve- 
ment too slight to justify the use of a tapered m 
in accurately measuring its magnetic field. 

in view of the difftculty 



VI. ADIABATIC FAST PASSAGE AND RABI RESONANCE 

Adiabatic f a s t  passage is a method well known in nuclear magnetic 
resonance for reversing the orientation of a spin system, particularly useful 
when the resonance is broadened by magnetic field inhomogeneity. It is also 
useful in molecular beams to reverse the direction of spin (i. e. , change the 
sign of the magnetic quantum number m) in a beam with a broad velocity 
distribution. We are concerned with the molecular beam case, in which the 
polarized beam traverses a region in which there is a magnetic field with a 
weak gradient. The beam travels in the direction of the gradient and at right 
angles to the field. An oscillating magnetic field whose frequency matches 
that required to induce the spin flip transition at the midpoint of the static 
field is applied over an extended region. The magnetic gradient causes the 
atomic resonance frequency to vary about that of the oscillating field as the 
atoms pass through. If the change in value of the static field that the atom 
sees is slow enough, and the oscillating field is strong enough, the direction 
of the spins will be rotated by 180', independent of velocity. 

We may contrast this with the more usual sort of transition, which 
we will refer to as a Rabi transition, induced in a region where the static 
field is homogeneous. The oscillating field strength will be much lower than 
in the former case, and whether the spin is rotated by 180' or by more or 
less will depend on the strength of the oscillating field and the length of time 
it acts on the atom. 

I If the velocity distribution is narrow, there may not be much practi- 
c d  difference between using either method to produce the 180' rotation we need 
for our state filter beam optics system. It would be a matter of convenience, 

It is quite simple to calculate the effect of the oscillating field for 
particles of spin 
We need to calculate the transition probability for going from the state m= f 
to the state m = - t .  The comparable transition probabilities when the 
angular momentum is greater than -$ can be obtained from the well known 

for either the adiabatic fast passage case or the Rabi case. 
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formula of Majorana (Reference 4, pp. 427-430). We are interested, for 
hydrogen, in the F = 1 level, where the total angular momentum is 1. If 
we call the probability for the (m= f ,  m= - A) transition of a spin 
particle T ,  then the Majorana formula gives the following results for Tm, m, , 
the probability that a particle in state m initially ends up in state m’. 

2 

Hydrogen maser 
the beam, focus atoms in 

- T)’ 

( 1  -TI  

Tgl = 2T ( 1  - T )  
To,o = (1 -2T)’ 
To,-1= 2T(1 -T) 

( o s T m , m , s l )  

optics will, in the absence of induced transitions in 
the (F= 1, m;= 1) and (F= 1, m=O) states into the 

storage bulb with approximately equal probability. Using the two-magnet 
system described above, where the first magnet deflects out atoms in the 
(F = 1, m= -1) and (F = 0, m= 0) states from the beam, a reversal of spin 
direction is induced and the second magnet deflects out atoms now in the 
(F = 1, m= -1) state, the ratio of intensity of atoms in the (F = 1, m= 0) state 
to the total intensity focussed into the storage bulb is given by 

Im=O 1 - 2 e + 2 s ’  - =  
Itot 1 + e 2  

where e =  1-T. For small values of 
The expression is shown graphically in Figure 5. For values of e between 
- 3 3  and 1, (or T between 0 and .67), the ‘ratio is less, and the performance 
of the maser worse, than if no transitions at all were induced. 

this ratio is approximately 1-2e. 

Calculating T : For a Rabi type of induced transition, in which the 
atom’s resonance frequency is constant over the region where the oscillating 
field inducing the transition is applied, the transition probability T is given 
by the expression (Reference 4, pp. 146-151 
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where b = matrix element of interaction inducing the transition, 
!J = w ~ - c L ) ,  the resonance frequency minus the applied freque 
t = length of time the interaction is applied to atom. 

We assume that b is constant over the interval t, and that the oscillating 
field is decomposed into two rotating components, one of which is ignorable. 
At resonance (n = 0 ) this function is a maximum, evidently, for sin bt= 1 

or  bt = n/2. 

In adiabatic fast passage, the value of Q changes continuous 
calculate the transition probability by dividing up the interval of time 
which the atom passes through the interaction region into many small inter- 
vals, assuming that b is the same in all of them, and that n is cons ta t  i 
each, changing discontinuously from one inierval to the next. We describe 
this calculation in detail in Appendix III. The principle of adiabatic fast 
passage can be visualized with the help of Figure 6 .  The energy difference 
between the states is shown as p H z ,  or  the equivalent frequency @,/A. 
The. effect of being in a rotating coordinate system, in essence s ~ t r ~ ~ ~ g  
away some of the Larmor precession, is represented by the vector w in 
the opposite (-z) direction. The contribution due to the rotating cornpon 
of the field inducing the transitions is shown by the vector lying on the 
in the rotating coordinate system. The resolvent vector sum of these three 
will move from being nearly parallel to the +z axis to being nearly parallel 
to the -z axis as HZ slowly decreases. The resolvent vector is equiv 
to an effective magnetic field, and if the change is slow enough, an atom 
originally aligned parallel to the z axis will follow the resolvent vector 
adiabatically, reversing its spin direction. 

The transition probability as a function of rate of passage is sho 
in comparison with that for a Rabi type of induced transition in Figure 7, The 
relation between the abscissas of the two curves is arbitrary. The maximum 
of the Rabi curve occurs when bt= w / Z  radians. 
bigger in the adiabatic fast passage technique, and we have made the 
where bt= 10 sadians coincide with the maximum of the Rabi curve, The 

The quantity b must b 
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quantity t is the t3m.e of flight through the entire coil in both cases, Schematic 
diagrams of the apparatus in which the two types of transition might be induced 
are shown in Figure 8, with the Rabi resonance region shown as A, and the 
adiabatic fast passage region shown as B. 

As it turns out, for A t / t  1: .4, which is about the spread in times of 
flight we expect from our beam optics calculations, and assuming optimum 
tuning, it makes no significant difference which method of rotating the atomic 
spins we use. The efficiency of the two methods is practically identical, and 
our choice must be indicated by other considerations. 

To design the adiabatic fast passage apparatus we must first choose 
a value of bt large enough so that the transition probability is close to 1 for 
the whole velocity range of interest. We must also chaose the length of the 
coil, the fractional gradient AH/H over the length of the coil, and how f a r  the 
resonance frequency of the atom is from the applied frequency when the atom 
ente.rs and leaves the coil. (It should be at resonance in the middle.) For 
example, let us choose as follows: 

b t r  15radians 
= 10b czlnitial 

AH/H = .I 
4 = 5cm, 

Then 2rrpAH = 20b, where 1 = 1.4 x 10' Hz/G. 
bH/H = 20b/2TTpH = .1 

.*. H = 200 b/2 WIJ. 

asrdvH= 1OOb/n 

The mean velocity V in a hydrogen beam will be 3 x IrPcm/sec. 
bt = b&/Vn 15 

/. b 2 15V/A = 9 x log 
and PH 5 9 ~107/,, = 28.6mZ 

H 2 20.4 gauss 

= 20 - 



This gives the minimum frequency we should apply to the coil and the corres- 
ponding magnetic field at its middle. We can obtain the strength of the oscilla- 

alS 

that of a hydrogen atom: 
ting field required from the relation for a spin particle whose g facto 

In this case gJ= 1, and the matrix element equals -$- A .  

*** Host = 2b/np  

2 2 x 9xi05/ TT x 1 . 4 ~  lo6 = .408 gauss. Host 
The factor of 'A multiplying Hosc is required because the spin interacts with 
a rotating component of Hosc rather than with the entire oscillating field. 

In the case of a Rabi resonance, the design is simpler, and the strength 
of the oscillating field has no relation to the strength of the static field. One 
would probably choose to design the region where the transition is induced to 
be similar to the C field of a cesium beam tube, as is shown in Figure 8 

That is, there would be a magnetically shielded region in which a relatively 
weak, uniform, static magnetic field is maintained. The length of the coil 
can be quite short, the frequency lower (e lo6 Hz), and the strength of the 
oscillating field somewhat less. It is necessary for ut / 2 7 > 1, so that atoms 
cannot pass through the coil while the oscillating field is close to zero. 

b t  = n/2 = bl/V 
If A =  1 c m  
and v = 3 x 105cm/sec., 

then b = 4.71 X lo5 

and Host= 2 b / ~  p = .204 

Relative Meri ts  of Adiabatic Fast Passage and Rabi Resonance Transition Methods 

As we stated above, the choice between the two methods of rotating the 
spin of the atoms in the hydrogen beam must be made on grounds other than their 
relative effectiveness, since for the velocity distribution we expect there will be 
little difference between them. 
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The principal advantage of the Rabi method is that 
magnetic shielding suid the uniform magnetic field ut 
well known to us. The frequency and strength of the osci 
lower, too, than the other method requires. The principal disadvantage is 
that care must be taken to avoid Majorana transitions in going from the strong 
field of the hexapole magnets to the weak one when the transition is induced. 
(Majorana transitions in a molecular beam are induced by sudden changes 
in direction of the static magnetic field along its trajectory.) Another dis- 
advantage is that the adjustment of the frequency and intensityof the oscillating 
field must be more precise than is required with adiabatic fast passage. 

Conversely, using adiabatic fast passage, the requirements on 
tuning and power level are not quite as sharp, the transition from strong 
field to weak field should be easier, but on the other hand it represents an 
untried technology. 

We noted above that in the Rabi method there is a requirement that 
U ~ / ~ T T  >> 1 to ensure that atoms don't pass through the transition region while 
the oscillating field is crossing through zero, We decompose the oscillating 
field into two contra-rotating components, one of which can be ignored, of 
constant amplitude,to calculate the transition probability shown in Figure 7. 
This decomposition is not valid if the atom does not experience several cycles. 
We make the same approximation with adiabatic fast passage, but it is not 
clear in that cas8 what the criterion is for the validity of the approximation. 

It is our opinion, weighing all these factors, that both methods 
should be tried, with priority given to the adiabatic fast passage method. This 
should receive the emphasis both because of its advantage in looser require- 
ments on level and frequency of the oscillating field and because it represents 
an advance in technique that should be tried. 
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VII. IMPROV 

If quenching due to ume of the 
storage bulb of a hydrogen maser can be neglected, the mechanisms that con- 
tribute to the hydroge 
escape of atoms from the storage bulb, 
on the wall of the storage bulb. Experi 
distinguished, and we lu ther. We have 

nance linewidth 
f atoms due to recombination 

o ierms cannot be 

the hydrogen resonance linewidth, Au,in is the portion of the line- 
width due to escape from the storage bulb and recombination--i.e. , the linewidth 
limit as the density of hydrogen atoms approaches zeTo. Ausee is the portion 
of the linewidth due to spin exchange collisions between hydrogen atoms and is 
proportional to atomic hydrogen density in the storage bulb, o r  to the total flux 
of atoms entering the storage bulb: 

"min 
- - Q%ot 

where D = spin exchange collision cross section, - 
v = mean relative velocity between hydrogen atoms, 
vb  = volume of the storage bulb, 

y 
Itot= total flux into the storage bulb. 

The total power radiated by the atoms in the storage bulb in the absence 

= reciprocal of mean lifetime of hydrogen atoms in storage bulb, 

of magnetic quenching can be expressed as: 

where I = net useful flux, 
Vc= volume of the cavity, 
po = Bohr magneton, 

Q = Planck's constant, 
u = radiated frequency. 

= If filling factor" (reference 1) 
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The width of the hydrogen resonance line is found by measuring the 

shift in the radiated frequency as the cavity is detuned: 
v - v o  = AVQ/V, 

where vo is the exact resonance frequency, as modified by the wall shift, 
second-order Doppler effect, and magnetic field correction. A vmin can be 
obtained by extrapolation of the linewidth as a function of flux to zero flux. 

Reducing the linewidth A V  while maintaining I will obviously result 
in  a marked increase in power output. 
the value of flux required for the maser to oscillate at all (P>  0). Finally, the 
theoretical limit to the frequency stability of a maser depends on linewidth and 
power: 

where 

In addition, reducing the linewidth lowers 

1h 
D ~ / I J  = ( A v / J ~ v )  ( k T / P t )  

gf is the rms  deviation in output frequency, 
k is Boltzmann's constant, 
T is the absolute temperature, 
t is the averaging time interval. 

As  a practical matter, however, this limit is never reached because the insta- 
bility due to additive noise in the external circuitry that receives the maser's 
signal, and longterm drifts due to temperature fluctuations and the like, drown 
it out. 

The power delivered by the maser beam is usually expressed in terms 
of a parameter q (Reference 1): 

q can be expressed in terms of the linewidth also, making use of the expressions 
given above. It is difficult to measure power or flux absolutely, but the value of 
I for which the power is zero can be found in terms of the linewidth by extrapola- 
ting the curve of power as a function of linewidth to zero power, Av' . When 
P= 0 we have 

A V '  (2AV' - Avan ) *  
hVC I =  

8&,'rlQ 
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then 
If we assume that the ratio Qot/I is a constant for all flux le 

A vmin ( A v ' - A vmin) 
a =  

The smaller the value of q, the better the performance of the maser. Note 
that the value of q c 
ledge of cavity Q, c 
or cavity and bulb volume, 

be obtained experimentally independent of ow- 
ing coefficient, filling factor, collision cross s ~ ~ t i ~ ~ ~  

To measure the effectiveness of using adiabatic fast pass 
of the values of q without and with it can be made. This will give 
ment in the ratio of the useful flux I to the total flux, Itot. Ideal1 
of the two values of q should be 2:l. 
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VIE. DESCRIPTION OF APPARATUS 

The experimental apparatus we built differs from the ideal design 
described in Table I in several respects, as shown in Table 111. The first 
magnet was made with a .125-inch gap diameter to facilitate both measure- 
ment of its field strength and its manufacture. The second magnet was longer 
than desirable to make use of parts of an already existing magnet. The Alnico 
drivers of the two magnets came from two different lots, which may account 
for the difference in the measured fields. This difference in field strength 
meant that the lengths of the two magnets were not quite matched, since it was, 
of course, necessary to choose their lengths before building and measuring 
them. In order to make use of available existing apparatus, the source diameter 
was greater than would have been desirable, and the distance from the second 
magnet to the storage bulb aperture was twice as long as it need have been. 
The velocity distribution of the beam flux calculated with the parameters we 
actually had is shown in Figures 9, 10 and 11, and the total flux is shown in 
Table W. 

The maser on which the experiment was performed had a spherical 
storage bulb with an eighth-inch diameter. The usual storage bulb has a 
seven-inch diameter, and the effect of the larger size is to decrease wall effects 
somewhat and to make the so-called "filling factor" (References 1 and 6) smaller. 
The small filling factor results in the maser's having a lower output of power!, 
while the lower rate of wall recombination results in  its linewidth being 
narrower than is the case with masers that have a seven-inchdiameter 
storage bulb. Before it was modified, the maser we used had conventional 
beam optics and it barely oscillated. From its calculated parameters it should 
have oscillated reasonably well, and we can only speculate as to why it aid not. 
Among the possibilities are misalignment, or transitions induced by magnetic 
gradients, either of which might introduce a background of unpolarized atoms 
into the storage bulb. As we shall discuss later, after the modification the 

. maser oscillated much better. 
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Table III -- Comparison of Actual vs. Design Ideal, 
Double Magnet Systems 

First Magnet Length 
First-toSecond Magnet Distance 
Second Magnet Length 
Second Magnet to Storage 

Bulb Aperture 
Source Diameter 
First Magnet Diameter 
Second Magnet Diameter 
Bulb Aperture Diameter 
First Magnet Field 
Second Magnet Field 
Stop Diameter 

Actual 
3.73 
4.0 
7.75 

20 
.030 
.125 
.125 
.150 
7040 
6500 
.032 

Ideal 
2.112 
4.0 
7.041 

- 

10 
. O l O  

.080 

-125 
.226 
5400 
7500 

0 

Table IV -- Comparison of Computations of Actual Double Magnet System 

Computation Fractional Intensity 

MAPSIN 4 x 10-4 

STRAFO with linear force law 7.4 x lod 

STRAFO with Breit-Rabi force 8.4 x lo* 
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The adiabatic fast passage region was a tapered electromagnet operated 
at about 20 gauss. The pole pieces were 3.25 inches long, 1 inch wide, and 
separated by .385 inch at their middle. They were made so that the gap between 
them had a uniform taper, varying a little over 8% in a distance of two inches. 
The pole pieces were made of Armco iron that was annealled after machining 
by being passed through a hydrogen atmosphere brazing furnace. The return 
yoke was an Armco iron cylinder one inch long and 3.5 inches 0. D . mounted co- 
axial to the beam and state selection magnets. Two arms along one diameter 
supported the pole pieces, and were wound with four turns each of Teflon insu- 
lated wire.  The desired 20 gauss field required 16 ampere-turns, or two 
amperes through the eight turns. Since there was some remanence in the 
magnet, another eight turns were provided through which an alternating current 
could be passed to eliminate the effects of remanence. Measurements of the 
field in the gap showed it to be uniform over the diameter of the beam, and to 
vary linearly with distance along the beam in the region of the coil. The 
change of strength of the field was in agreement with the change in gap because 
of the mechanical taper: 

H o d  AI+ 

That is, the strength of the field times the gap width d at that point was equal 
to the number of ampere-turns in the magnet, as it should. The hexapole mag- 
nets adjacent to each end of the tapered magnet caused variations in the field, 
depending on their relative orientation, but these did not extend to the region 
in which the coil was mounted. 

The coil, two inches long, was made of 55 turns of #21 magnet wire 

wound on a 3/r6-inch mandrel. Its inductance was about 1.6 phenry. In order 
to drive it at 28 MHz with the signal generator available, it was necessary to 
resonate it with a variable capacitor mounted external to the vacuum system. 

The maser used had a loaded cavity Q of 32,000 and the coupling co- 
efficient was  0.2. The cavity could be fine-tuned by means of a mechanical 
plunger operated by a screw from outside the vacuum. Unfortunately, it was not 
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possible to tune the cavity to the hydrogen resonance frequency, but 
made no real difference to th 

The two magnets and the tapered magnet were held in ali 
a rigid framework. The axis of the two magnets w 
through the storage bulb aperture by adjusting the mounting of the framework. 
The position of the source collimator likewise was adjusted by eye to coincid 
with the axis. The alignment turned out to be completely adequate. 
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M. EXPERJMENTAL RESULTS 

The first significant experimental result is that the maser oscillated 
very well with its rather complicated beam optics system, both with and without 
the enhancement from the induced adiabatic fast passage resonance to eliminate 
atoms in the (F= 1, m= 1) state. The oscillation was stronger, and occurred at 
lower source pressures than had been the case before the modification of the 
beam optics, when it had been found very difficult to get the maser to oscillate 
at all. 

In our experiments the data that could be accurately measured were 
the relative power from the maser and the frequency of its signal. The fre- 
quency was measured by comparison to another maser. The reference maser 
was used to phase-lock a 5MHz crystal oscillator whose signal was compared, 
after multiplication and synthesis to a frequency close to that of the maser 
under study, to the frequency of the maser signal. The synthesizer was set 
so that the period of the beat was about 8 seconds, and the duration of 10 periods 
was measured with an electronic counter. For a given set of conditions (flux 
leve1,and with or without adiabatic fast passage enhancement), the beat period 
was recorded for each of a series of settings of the mechanical tuner. After 
some manipulation of the data, the slope of the curve of change of maser fre- 
quency as a function of cavity frequency offset was obtained by a least squares 
f i t  to a straight line. Also, for a given cavity frequency setting, the relative 
power was measured by adjusting a calibrated attenuator to bring the signal 
to  a predetermined level. The results of a series of measurements are shown 
in Figure 12. In the upper section, relative flux, assumed proportional to source 
pressure, is plotted as a function of cavity pulling, the slope of the maser fre- 
quency versus cavity fxequency curve. In the lower section the relative power 
is plotted against cavity pulling. The e r ror  bars represent the 2 u confidence 
limits on the slope deduced from the least squares regression. In each sectio 
the curve on the left, representing less pulling and hence the narrower hydro 
resonance linewidth, is the result when adiabatic fast passage transitions are 
being induced, 
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When these curves are extrapolated to zero power or zero beam inten- 
sity, we can deduce the limiting linewidths A V and A vmin from the interce 
Then, as described in Section VI, we can find the degree of enhancement; that is, 
the ratio of the ratios of useful Bux to total flux with and without the adiabatic 
fast passage transition being induced. 

Qualitatively, with adiabatic fast passage transitions being induced, 
there is a slight increase in maser power. The transient behavior, on applying 
the radio frequency power to the coil, is for the power to decrease for a few 
seconds and build up. Conversely, when the r. f .  power is turned off, the power 
increases briefly and then declines. This is an indication that the total useful 
flux reaching the storage bulb of the maser is smaller when the adiabatic fast 
passage transition is being induced, as well as the total flux. 

We find that turning on the adiabatic fast passage transition increased 
the power put out by the maser by about 2db. By calculating the values of q 
with and without enhancement, and taking their. ratio, as described above, the 
improvement in the ratio of useful flux to total flux was found to be approximately 
20 per cent. 

The degree of improvement is smaller than e cted. There are several 
possible explanations for this. One is that Majorana trmsiti s are occurring 
between the state selection magnets and the storage bulb aperture, scrambling 
the state populations. Originally the hydrogen beam passed through a fairly 
small hole ('h inch) in a mumetal septum, and we thought that transitions might 
be occurring there. However, when this hole was enlarged to two inches there 
was no improvement discernible. When a coil of wire was placed around the 
region through which the beam passed and direct current was made to flow through 
it, it was possible to make the performance of the maser worse for current flow 
in one direction, but not to improve it. It is still possible that such transitions 
occur somewhere else. Certainly the power level and residual linewidths are 
sensitive to the bias field at which the maser is operated, and to the settings of 
current in the coils used to tr im that field. 
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Another reason why the improvement may not be as good as expected 
is that the beam optics preferentially.focus atoms in the (1, 0) state into the 
storage bulb anyway. As shown in Table IV, the calculations based on the 
approximation of a point source of atoms show that the (1 , 0) state is focussed 
13% more efficiently than the (1,l) state, and the advantage might be even 
greater in actuality. There may also be a background of unpolarized atoms 
that finds its way into the storage bulb. 

The adiabatic fast passage transition seems to work as intended. If 

the power applied to the coil is too low, maser operation is quenched , but the 
performance of the maser seems to be independent of power level of frequency 
over a remarkably broad range, as long as the frequency corresponds to reso- 
nance for the transition between the (F = 1 ) hydrogen levels near the center of 
the coil. 

Audoin et al (Reference 7) have operated a hydrogen maser with 
similar optics and have measured the actual state population in the storage 
bulb at very low flux levels in an experiment which we did not have the equip- 
ment (or the time) to duplicate. They found, with adiabatic fast passage enhance- 
ment, that approximately 85% of the atoms were in the desired ( 1 , O )  state. The 
improvement in power of the maser in oscillation, however, was also about 2 db. 
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X. CONCLUSION 

We have made thorough calculations that show that a hydrogen atomic 
beam optics system can be made that substantially focusses only atoms in 
the (F=l, m=O) state into the storage bulb of a hydrogen maser. The 
efficiency of this state filter system can be comparable to the simpler 
state selection systems that have generally been used. We have calculated 
the performance on the basis of two different approximations, and found 
them to agree closely for our proposed design. 

We have found that it is feasible to use either a conventional Rabi 
resonance or an adiabatic fast passage transition to induce a 180a rotation 
of spin alignment in the region between the two hexapole magnets of our 
proposed beam optics system. We suggest that both methods be tried, 
with the adiabatic fast passage method given first priority. 

Calculations of the effect of tapering the state selecting magnets show 
tht  flaring the first magnet results in a slight improvement in the efficiency 
with which hydrogen atoms from the source are  used. The calculated 
improvement is small enough that it does not justify using a tapered magnet 
when the difficulties in assessing the field strength in a tapered magnet 
a re  considered. 

The experimental test of the improved beam optics system showed 
that a relatively complicated atomic beam optics design can be made to work 
efficiently. The improvement obtained by using adiabatic fast passage, while 
not as great as expected, is useful to the operation of the maser, and there 
are no drawbacks to its use apart from the greater elaborateness of the design. 
The application of the principle to atomic hydrogen masers is practical and 
valuable. 
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XI. NEW TECHNOLOGY 

The following items of new technology have developed during 
the work on this contract: 

a) Method of analyzing the field of a hexapole magnet. 

b) Design of a state selecting hydrogen beam optics 
system. 
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A p p e n d i x  I 

Below is a listing of the program MAPSIN used to calculate the 
fraction of atoms effused from the collimator that reach the aperture of the 
storage bulb in a two magnet beam optics system for a hydrogen maser. 
We assume a Maxwell-Boltzmann velocity distribution at a temperature of 
380 K. We provide the following data: 

R1 
T1  
R2 
T2 
L1 
L2 
L3 
L4 

L5 
B@ 

the initial bore radius of the first magnet 
the taper of the first magnet 
the initial bore radius of the second magnet 
the'taper of the second magnet 
the distance from the collimator to the first magnet 
the length of the first magnet 
the distance between magnets 
the length of the second magnet 
the distance from the second magnet to the target aperture 
the peak field strength in the magnets 

M 1  and M2 equal - 1 if the magnets deflect atoms away from axis 
01 
02 
03 
04 
05 

06 

07 the source radius 
M3 
M5 
V 1  
V2 the final velocity 
V3 
W2 

the exit radius of the first magnet 
the radius of stop in exit plane of first magnet 
the initial radius of the second magnet 
the exit radius of the second magnet 
the radius of stop in exit plane of second magnet 
the radius of target aperture 

the number of radial zones source is divided into 
the number of random initial slopes essayed from each zone 
the initial velocity in integrating over range of velocities 

the velocity interval of each step 
the transmission factor of the collimator 

1 - 1  



The velocities are expressed as fractions of cZ(  = / m m )  
The magnetic field is in gauss 
The linear dimensions must all be expressed in the same unit 

1 - 2  



1 - 3  



1 - 4  



1 - 5  



A p p e n d i x  I1 

Below is a listing of the program STRAFO used to  calculate the 
fraction of atoms effused from the collimator that reach the aperture of 
the storage bulb in a two-magnet beam optics system for a hydrogen maser. 
We assume a Maxwell-Boltzmann velocity distribution at a temperature of 
380%. We provide the following data: 

L1 
L2 
L3 
L4 
L5 

v1 
v 2  
v3 
N l  

N2 
N3 

R1 
R2 
R3 

B@ 
W 

the 
the 
the 
the 
the 
the 
the 
the 
the 

the 
the 
the 
the 
the 
the 
the 

distance from collimator to first magnet 
length of the first magnet 
distance between magnets 
length of the second magnet 
distance from the second magnet to the target aperture 
initial velocity in integrating over range of velocities 
final velocity 
velocity interval of each step 
number of angular ones into which the cone of 
angle ( 2 P B , , / ~ V ~  )'z is divided 
number of steps through the first magnet 
number of steps through the second magnet 
radius of the first magnet 
radius of the second magnet 
radius of the storage bulb aperture 
peak field strength in the magnets 
transmission factor of the collimator 

The velocities are expressed in fractions of 01 [ = (2kT/m ) "1. 
The magnetic field is expressed in gauss. 

Linear dimensions must be expressed all in the same unit. 
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GE 6 B U - L I N E  T / S  FFIOW D A k T V O U l H  
UISC S T O R A G E :  YHOkI 'AGE*  PL.EkSE UNSAVE UNNECESSPhY t'hOC-kPMS* 
TEFiWTNAL 311 ON A T . 1 S : l - i  1 1 / 1 1 / 6 8  
l!SF'k NLl~tiFK--L21SHl,HPFT 
S Y 5 '1 EM - - P A  S I C 
NEb.  O n  OLD--OLD 
O L D  FIL E N A N E - - S T h A F O  
hEA17Y 
1 I S 1  

S T k A F O  15:1p 11/11/6H 
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01 .l) 
01.1) F 1 L . F :  N A K E - - N A P S I N  
)t E A D Y  
b Y E  
OFF AT 15:241 11/11/68 
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A p p e n d i x  I11 

Below is a listing of the program ADIAFP used to calculate the 
transition probability for a spin particle in a rotating magnetic field as 
it passes through a static field that varies at a constant rate. We specify 
the following: 

N the number of zones the transition region is divided into 

R the range of the atomic resonance frequency in radians 
over the transition region divided by 2b 

D the strength of the rotating field: D = b t  (radians) 
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1B LFT Fl=l 
26-7 L.ET F2=Gl=G2=@. 

35 PkINT " N L I N B E h  O F  H A L F b I D T H S  A 1  S?AlrT="J h/2 
36 P R I N T  "Nt.lMREk OF STEPS="iN 

3121 k E A D  N,F.. 

3 7 P ' H I N T  '"I kANS1 TION", "JiADI AN 5'' 
38 P k I N T  " P K O R A R I I + I  TY"1"PkECESSEC)" 
39 FOti T)=15.5 TO 2(?, STEP a 5  
48 FOk K=l 10 N 
a5 L E I  Z=h*(<V-*5)/N-*5> 
5C'r LET Yl=l/SUk(l+Zt2) 
6(71 LFT Y2=Yl*Z 
7 P  LE? X=U/<Yl*N> 
8 8  L E T  C = C O S ( X )  
9c? L E T  S = S I N ( X )  
1 c?pI L E T  F3=F1 *C- S* <Y2*F3- Y 1 *G2> 
1 lL? LET F4=F2*C+S*CY2*Fl-Yl*Gll 
178 ' LFT  G 3 = m  * C + S *  ( Y 1 * F2+Y2* 62 1 
130 LET ~4=~?*C-S*(Yl*F16Y%*Gr) 
14p1 LFT Fl=F3 
15c1 LET F2=F4 
168 L F T  Gl=G3 
1 7 P l  L E T  C2=G4 
18R NEXT K 

195 LET F1=1 
196 LET F2=Gl=G2=8 
%PI0 NEXT D 

999 END 

19B P R I N T  Gl?2+G2t2rD 

FlB0 DATA 2 @ @ r  l @  
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